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Unintended consequences of optimizing a queue discipline for a

service level defined by a percentile of the waiting time

Benjamin Legros

PSB Paris School of Business, Department of Economics, 59 rue Nationale, 75013 Paris, France

Abstract

In service systems, the service level is often represented by a percentile of the waiting time. This

creates an incentive to optimize the queue discipline. For this purpose, in an M/M/s queue setting,

we prove that the optimal discipline gives priority to the oldest customer who has waited less than the

acceptable waiting time. Next, we derive explicitly the performance measures. Finally, we show that

although this discipline may reduce staffing costs, it leads to excessive wait for non-prioritized customers.

Keywords: queueing systems, Markov chains, performance evaluation, waiting time, staffing, queue

discipline, priority.

1 Introduction

Context and Motivation. In numerous service system, the management is interested in representing the

information on waiting times by a single number to facilitate comparisons. A percentile of the waiting time

is the typically chosen in this purpose. This metric is often preferred to the average speed of answer (ASA)

because the former was perceived to be more informative; see [1]. In particular, the ASA does not take into

account the variability of the waiting time.

However, measuring the service level by the percentage of customers that has to wait longer than a

specified amount of time (SLP) has also disadvantages. First, this metric gives no information on how long

customers that have exceeded the acceptable waiting time (AWT) still have to wait. Second, it provides an

incentive to managers to give priority to customers who have not yet reached the AWT, thereby increasing

even more the waiting time of customers that have waited longer than the AWT.

The fact that system operators may attempt to optimize wait time percentiles is, in many situations, an

unintended consequence that was not anticipated by those who proposed using the percentiles as performance

measures. It is thus interesting to study policies that optimize the SLP in order to better understand the

consequences of such a “rational” decision. Already, [5] illustrates numerically that optimizing the SLP is a

bad choice for most of the other service level measures in a setting where customers who have waited more

than AWT are dropped. [6], in a call center context with contract and non-contract customers, also show

that the delay percentile used in practice results in long delays and high coefficients of variations compared

to what they might have achieved under a first-come-first-served policy. We aim in this paper to further

investigate the consequences of this managerial decision.



A very simple way to minimize the SLP is to optimize the queueing discipline. Changing the queueing

discipline is attractive since it has no impact on the ASA, and does not force radical rejection decisions

which could be badly perceived. However, as pointed out by [5], this may have bad consequences. The aim

of this paper is to quantify and evaluate these consequences. It is interesting to determine (i) how much the

SLP can be improved when changing the queue discipline, (ii) how the staffing decisions may be impacted

and (iii) how bad can be the service level deterioration for non-prioritized customers.

Contributions. We propose in this paper to reconsider the M/M/s queue for which we optimize the

queueing discipline to an objective of minimizing the SLP. We prove in Section 2 that the optimal policy

gives a priority to the oldest customer who has waited less than the AWT. The proposed discipline is intuitive

and has already be mentioned by [5] but, to the best of our knowledge, it has not been evaluated in the

queueing literature.

The main objective is to determine the proportion of customers who have waited less than AWT time

units, P (W < AWT) and compare this metric to what can be found with a FCFS discipline. In order

to differentiate between prioritized and non-prioritized customers, we are also interested in the conditional

expected waiting times E(W |W < AWT) and E(W |W > AWT) and by the average excess waiting time

E((W − AWT)+). Closed-form expressions of these performance measures are derived in Section 3. The

difficulty to compute these metrics is that the decision to change a high priority customer into a low priority

one does not depend on a classical state definition like the number of high priority customers but on the

experienced waiting time of a given customer. The solution to overcome this difficulty is to use the discretized

waiting time of the first high priority customer in line as a state definition.

In Section 4, we evaluate the consequences of giving a priority to customers who have waited less than the

AWT. The expected consequence is that this new policy improves SLP especially in congested situations. It

may also lead to cheap staffing solutions. We show in particular that above a threshold on the traffic intensity,

no safety staffing is required. Yet, this discipline strongly deteriorates the waiting time of non-prioritized

customers. This unwanted consequence is also significant in congested situations.

2 Optimal discipline and setting

We consider a multi-server single queue with s identical, parallel servers. The arrival process of customers

is Poisson with rate λ. Service times are independent and exponentially distributed with rate µ. To ensure

stability, we assume λ < sµ. Our queuing model only differs from the classical M/M/s queue by the queue

discipline. The chosen queue discipline minimizes the SLP among all non-preemptive, work-conserving

policies. It is defined as follows.

• A strict non-preemptive priority is given to customers who have waited less than AWT.

• The discipline for prioritized customers is FCFS.
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• The discipline for non-prioritized customers is arbitrary.

The optimality of this policy is proven in Theorem 1 using sample path arguments.

We name this discipline the MPW discipline (Minimized Percentile of the Waiting time). The M/M/s

queue under MPW discipline is equivalent to a particular V-queueing model with two queues; Queue 1 and

Queue 2, where customers in Queue 1 have a non-preemptive priority over customers in Queue 2. The arrival

process in Queue 1 is Poisson with parameter λ and the arrival process in Queue 2 is generated by customers

in Queue 1 who have waited exactly AWT time units without being served. This equivalent queueing model

is depicted in Figure 1.
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Figure 1: Equivalent Model for the MPW queue

Theorem 1 In order to minimize SLP, it is optimal to give priority to the first customer in line in Queue

1.

Proof. We prove this result by considering a fixed sample path of the stochastic process. This sample

path is determined by arrival instants, departure instants, and service initiation instants. Since customers

in Queue 1 and in Queue 2 have the same service time distribution, we can assume that the service times

are only determined by the order of service initiations. In the long-run, this is equivalent to considering that

the service times are determined by customers; e.g., see [2]. Therefore an interchange for the order of service

of two customers does not affect the event epochs.

Consider an arbitrary policy π. Suppose that at time t1, under policy π, a server becomes free and selects

a Type 2 customer as the next one to serve, even though there is a Type 1 customer in Queue 1 who has

waited w time units so far. Due to work-conservation, there will be a later time instant, say t2, where the

initially considered Type 1 customer will be scheduled in service. At this instant t2 either this initial Type

1 customer is still a Type 1 customer if w+ t2 − t1 ≤ AWT or this initial Type 1 customer has changed into

a Type 2 customer.

Now consider the policy π′ which follows all actions of π except that it schedules a Type 1 customer at t1

and a Type 2 customer at t2. The total number of customers who enter service before t2 is equal under both

policies. However, the number of Type 2 customers who enter service before t2 is higher (if w + t2 − t1 >

3



AWT) or equal under π. This proves that a priority should be given for Queue 1 customers. To prove that

FCFS in Queue 1 is optimal, the same approach can be applied. 2

3 Performance Analysis

We use a non-traditional approach for the modeling of Queue 1, as proposed in [4]. The idea is to discretize

the waiting time of the first customer in line (FIL) by a succession of exponential phases with rate γ per phase

instead of using the traditional definition of the number of customers in the queue. The maximal number of

possible waiting phases in Queue 1 is denoted by n. After leaving this last waiting phase a customer -if not

served- is routed to Queue 2. This modeling is an approximation of the real system.

State definition. The system is modeled using a two dimensional continuous-time Markov chain. We

denote by (x, y) a state of the system for −s ≤ x ≤ n and y ≥ 0, where x represents the servers state or

the waiting time in Queue 1 and y represents the number of customers in Queue 2. More precisely, states

with −s ≤ x ≤ 0 correspond to an empty Queue 1 and s+ x busy agents. States with 0 < x ≤ n correspond

to the phase at which the FIL in Queue 1 is waiting and all agents are busy. Lumping together the states

representing free servers and the waiting time of the FIL in Queue 1 in one dimension can be done as servers

cannot be free while customers are waiting. Note that the number of customers in Queue 1 is not used in

the state definition. Yet, the method proposed by [4] allows us to obtain the distribution of the queue length

using the waiting phase of the FIL.

Transitions. The transition rate diagram is depicted in Figure 2. We next describe the 6 possible transi-

tions in the Markov chain. When the FIL changes, because of a service completion (see transition Type 4) or

because of the current FIL moving to Queue 2 (see transition Type 6), the waiting time phase changes from

x > 0 to x − h with probability qx,x−h, where qx,x−h =
(

λ
λ+γ

)(
γ

λ+γ

)h

for 0 ≤ h < x and qx,0 =
(

γ
λ+γ

)x

,

see [4].

1. An arrival with rate λ while Queue 1 is empty (−s ≤ x ≤ 0, y ≥ 0), which changes the state to

(x + 1, y). If −s ≤ x < 0 and y = 0, then the number of busy servers is increased by 1. If x = 0 and

y ≥ 0, then the FIL entity is created.

2. A service completion with rate (s + x)µ while queues 1 and 2 are empty (−s < x ≤ 0, y = 0), which

changes the state to (x− 1, y). The number of busy servers is reduced by 1.

3. A service completion with rate sµ while Queue 1 is empty, Queue 2 is not empty and all servers are

busy (x = 0, y ≥ 1), which changes the state to (0, y − 1). The number of customers in Queue 2 is

reduced by 1.

4. A service completion with rate sµqx,x−h while Queue 1 is not empty (0 < x ≤ n, y ≥ 0), which changes

the state to (x− h, y), that is, the new FIL is in waiting phase x− h.
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5. A phase increase with rate γ while Queue 1 is not empty and the FIL is not in waiting phase n

(0 < x < n, y ≥ 0), which changes the state to (x+1, y). The waiting phase of the FIL is increased by

1.

6. A phase increase with rate γqx,x−h while the FIL in Queue 1 is in waiting phase n (x = n, y ≥ 0),

which changes the state to (x−h, y+1), that is, the new FIL is in waiting phase x−h and the number

of customers in Queue 2 is increased by 1.
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Figure 2: Transition rate diagram

Convergence to the real system. The first approximation is the waiting time in Queue 1. We choose

n and γ such that n
γ

∆
= AWT. Therefore the maximal time spent in Queue 1 follows an Erlang distribution

with n phases and rate n/AWT per phase. This ensures that as n and γ go to infinity, this random variable

converges to the deterministic duration, AWT. The second approximation is the transition from Queue 1 to

Queue 2. It is assumed in our modeling that after one γ-transition from state x = n only one customer is

routed to Queue 2. However, more than one customer could be in phase n (as in any other phase). More

precisely, given that one customer is in phase n, this customer is the only one with probability γ
λ+γ , or two

customers or more are in phase n with probability λ
λ+γ . Again, as γ tends to infinity, the probability that

only one customer is in one phase is equal to one.
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3.1 Stationary probabilities

Let us introduce the notations a = λ
µ and aγ = s · a+γ/µ

s+γ/µ . The ratio a represents the traffic intensity of the

system and aγ is a modified version of the traffic intensity. The parameter aγ is an increasing function of γ

which is equal to a for γ = 0 and equal to s for γ = ∞. Proposition 1 gives the stationary probability px,y

to be in state (x, y) for −s ≤ x ≤ n and y ≥ 0.

Proposition 1

p−s,0 =

s−1∑
x=0

ax

x!
+

as

s!

(
1 + a

s
λ
γ − a

s

(
1 + λ

γ

) (aγ

s

)n)
(1− a/s)

(
1− a

s

(aγ

s

)n)
−1

,

px−s,0 =
ax

x!
· p−s,0, for 0 ≤ x ≤ s,

px,0 =
λ

γ
·

(
s
aγ

)n−x

− a
s(

s
aγ

)n

− a
s

· p0,0, for 1 ≤ x ≤ n,

px,y =
λ

γ

(a
s

)y

·
1− a

s(
s
aγ

)n

− a
s

· p0,0, for 1 ≤ x ≤ n, y ≥ 1,

p0,y =
(a
s

)y

·
1− a

s(
s
aγ

)n

− a
s

· p0,0, for y ≥ 1.

Proof. We adopt the following approach to derive the stationary probabilities. First, we determine a set

of equilibrium equations. Next, using these equilibrium equations we derive a simple explicit expression of

the probability that the FIL in Queue 1 is in waiting phase x; px =
∞∑
y=0

px,y for 0 ≤ x ≤ n. Considering

this probability leads to a one-dimensional problem which in turn allows us to compute the probability of

an empty system using the normalizing condition. The other stationary probabilities can be derived with a

similar approach.

Equilibrium equations. Let S be the state space. Consider the cut between A1 = {(−s, 0), · · · , (x, 0)}

and S\A1, where −s ≤ x < n. Observing that
(

γ
λ+γ

)x

+
x−1∑
l=h

(
λ

λ+γ

)(
γ

λ+γ

)l

=
(

γ
λ+γ

)h

, we deduce that the

cumulative transition rate from state (x, y) to states (0, y), (1, y) · · · (x − h, y) is sµ

(
γ

λ+ γ

)h

, for 0 ≤ h <

x < n and y ≥ 0. Therefore, by equating flows across the cut, one may write

λpx,0 = (s+ x+ 1)µpx+1,0, for − s ≤ x < 0, (1)

λp0,0 = sµp0,1 + sµ
n∑

i=1

pi,0

(
γ

λ+ γ

)i

, (2)

γpx,0 = sµp0,1 + sµ
n∑

i=x+1

pi,0

(
γ

λ+ γ

)i−x

, for 0 < x < n. (3)
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Consider now the cut between A2 = {(x, y′) : y′ ≤ y} and S\A2, where y ≥ 0. This leads to

γpn,y = sµp0,y+1, for y ≥ 0. (4)

Finally, from the cut between A3 = {(0, y), (1, y), · · · (x, y)} and S\A3, where 0 ≤ x < n and y ≥ 1, we get

(sµ+ λ)p0,y = sµp0,y+1 + sµ
n∑

i=1

pi,y

(
γ

λ+ γ

)i

+ γ

(
γ

λ+ γ

)n

pn,y−1, for y ≥ 1, (5)

γpx,y + sµp0,y = sµp0,y+1 + sµ

n∑
i=x+1

pi,y

(
γ

λ+ γ

)i−x

+ γ

(
γ

λ+ γ

)n−x

pn,y−1, for 0 < x < n and y ≥ 1,

(6)

since the cumulative transition rate from state (n, y− 1) to states (0, y), (1, y), · · · , (n−h, y) is γ

(
γ

λ+ γ

)h

,

for 0 ≤ h < n and y ≥ 1.

Probability of an empty system. Recall that px is the probability that the FIL in Queue 1 is in waiting

phase x; px =
∞∑
y=0

px,y for 0 ≤ x ≤ n. One can prove by induction on x that pn−x =
(

s+γ/µ
a+γ/µ

)x

pn =
(

s
aγ

)x

pn,

for 0 ≤ x < n. Using Equation (5), we deduce that p0 = γ
λ

(
s
aγ

)n

pn, therefore px = λ
γ

(aγ

s

)x
p0 for 1 ≤ x ≤ n.

Moreover, summing up Equations (4) for y ≥ 0, we get sµ(p0 − p0,0) = γpn. Since pn = λ
γ

(aγ

s

)n
p0,

p0 =
p0,0

1− a
s (

aγ
s )

n . Using now Equation (1), we finally deduce that p0 =
as

s! p−s,0

1− a
s (

aγ
s )

n . Note that this expression

will be used in the proof of Theorem 2 to derive the expected waiting time in Queue 1. Using the fact that

the overall sum of the stationary probabilities is equal to one, we obtain the probability of an empty system

as in Proposition 1. 2

3.2 P (W < AWT), E(W |W < AWT) and E(W |W > AWT)

In Theorem 2, we derive the performance measures under the MPW discipline. In order to relate the per-

formance measures under the MPW discipline and the FCFS discipline we introduce the notation C(s, a) =

P (W > 0) (i.e., probability of queueing). This probability is identical in the FCFS discipline and in the

MPW discipline due to work-conservation. Recall from [3] page 103 that C(s, a) =
as

s!
s−1∑
x=0

ax

x! +
as

s!
1

1−a/s

· 1
1−a/s .

Theorem 2 We have

SLP = P (W > AWT) = C(s, a) ·
(
1− a

s

)
e−sµ(1−a/s)·AWT

1− a
s e

−sµ(1−a/s)·AWT
,

E(W |W < AWT) =
as

s!

sµ
· 1− e−sµ(1−a/s)·AWT(1 + sµ(1− a/s) ·AWT)

(1− a/s)
2

((
1− a

s e
−sµ(1−a/s)·AWT

) s−1∑
x=0

ax

x! +
as

s!
1−e−sµ(1−a/s)·AWT

1−a/s

) ,

E(W |W > AWT) =
1 + sµ ·AWT

sµ(1− a/s)
.
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Proof. The approach to derive the performance measures first consists of defining the embedded Markov

chain at specific instants chosen in order to reach the performance measures at arbitrary instants. Next, by

letting γ and n tend to infinity we obtain the results.

The embedded Markov chain. Arriving customers either enter service upon arrival, enter service from

Queue 1 after some wait, or are routed to Queue 2. Call the instants when one of these three events occurs

Q-instants. Since the events at Q-instants all occur one at a time, in the long-run the system is identical at

arrival instants and Q-instants. Since the Poisson arrival process of customers is independent of the system

state, the system is identical at arrival instants and arbitrary instants. So, the system is also identical at

arbitrary instants and Q-instants. We therefore choose to consider the system at Q-instants to obtain the

performance measures (the arrival instants cannot be seen in our Markov chain).

The Q-instants are determined by λ-transitions from state with a vacant server (transition Type 1),

sµ-transitions from the other states except in states (0, y) (transition Type 4) and γ-transitions from states

(n, y) (transition Type 6), for y ≥ 0. The overall customer flow at Q-instants is identical to the customer

flow at arrival instants and has a rate λ. Therefore, the probability at Q-instants that x servers are busy

for 0 ≤ x < s is λ
λp−s+x,0 = p−s+x,0. The probability that the FIL is in waiting phase x and y customers

are in Queue 2 is sµ
λ px,y for 0 < x < n, 0 for x = 0 and sµ+γ

λ pn,y for x = n. The stationary probabilities at

Q-instants are then completely known. This allows us to derive the performance measures.

Performance measures. The approach to obtain the performance measures is to let γ and n tend to

infinity with respect to n
γ =AWT.

We first derive the proportion of customers who are routed to Queue 2. A customer moves from Queue 1

to Queue 2 due to a γ-transition from states (n, y) (transition Type 6), y ≥ 0. The proportion of customers

which are moved from Queue 1 to Queue 2 is therefore

P (W > AWT) = lim
n, γ → ∞

γ

λ
pn.

Recall from the proof of Proposition 1 that pn = λ
γ

(aγ

s

)n
p0 and p0 =

as

s! p−s,0

1− a
s (

aγ
s )

n . Therefore,

γ

λ
pn =

as

s!

(aγ

s

)n
p−s,0

1− a
s

(aγ

s

)n . (7)

From the expression of p−s,0 in Proposition 1 and using limn,γ→∞
(aγ

s

)γ·AWT
= e−sµ(1−a/s)·AWT, we get the

probability of an empty system in an M/M/s queue:

lim
n, γ → ∞

p−s,0 =

[
s−1∑
x=0

ax

x!
+

as

s!

1

1− a/s

]−1

. (8)

8



By applying the last result in Equation (7), we obtain the explicit expression of P (W > AWT).

Consider now the served customers from Queue 1. A served customer from Queue 1 waits x γ-phases with

probability sµ
λ px for 0 < x ≤ n and each phase has an expected duration of 1/γ. Therefore,

P (W < AWT) · E(W |W < AWT) = lim
n, γ → ∞

sµ

λ

n∑
x=1

x

γ
px

= lim
n, γ → ∞

p0
sµ

γ2

aγ
s

−(n+ 1)
(
1− aγ

s

) (aγ

s

)n
+ 1−

(aγ

s

)n(
1− aγ

s

)2 .

In order to compute this limit, we separate the last expression in three parts. First, using the result of

Equation (8), we may write

lim
n, γ → ∞

p0 = lim
n, γ → ∞

as

s! p−s,0

1− a
s

(aγ

s

)n =

as

s!

[
s−1∑
x=0

ax

x! +
as

s!
1

1−a/s

]−1

1− a
s e

−sµ(1−a/s)·AWT
. (9)

Second, we have

lim
n, γ → ∞

sµ

γ2

aγ
s

1(
1− aγ

s

)2 = lim
n, γ → ∞

sµ

(s− a)2

(
a+ γ

µ

)(
s+ γ

µ

)
γ2

=
1

sµ(1− a/s)2
. (10)

Finally, one may write

−(n+ 1)
(
1− aγ

s

)(aγ
s

)n

+ 1−
(aγ

s

)n

= 1−
(aγ

s

)n

− (n+ 1)(s− a)

s+ γ/µ

(aγ
s

)n

.

Using the assumption n
γ = AWT yields

lim
n, γ → ∞

−(n+ 1)
(
1− aγ

s

)(aγ
s

)n

+ 1−
(aγ

s

)n

= 1− e−sµ(1−a/s)·AWT(1 + sµ(1− a/s) ·AWT). (11)

Combining Equations (9), (10) and (11) leads to the expression of P (W < AWT) · E(W |W < AWT) which

in turn allows us to derive E(W |W < AWT).

We now consider the expected waiting time of customers who are routed to Queue 2. The probability of

having y customers in Queue 2 at Q-instants (y ≥ 0) is
n−1∑
x=1

sµ
λ px,y +

sµ+γ
λ pn,y. From the proof of Proposition

1, we recall that px,y = pn,y and pn,y = pn,0
(
a
s

)y
for 1 ≤ x ≤ n and y ≥ 0. Therefore,

n−1∑
x=1

sµ

λ
px,y +

sµ+ γ

λ
pn,y = pn,y

[sµ
λ
n+

γ

λ

]
=

γ

λ

(a
s

)y

pn,0

[
1 +

sµ

γ
n

]
.

This leads to the expected number in Queue 2. Next, applying Little’s Law leads to E(W |W > AWT).

Note that since E(W ) does not depend on the queue discipline, we could also compute the last performance

measure by the relation P (W < AWT) · E(W |W < AWT) + P (W > AWT) · E(W |W > AWT) = E(W ).

9



This finishes the proof of the Theorem. 2

4 Consequences of the MPW discipline

In this section we compare between the MPW and the FCFS discipline in order to evaluate the benefits and

unintended consequences of the MPW policy.

Proportion of customers who have waited more than AWT. In Proposition 2, we evaluate the

improvement which results from using the MPW instead of the FCFS discipline when considering the SLP

as the unique service level measure. As expected, the MPW order achieves a lower SLP. Moreover, the

benefits of this discipline are more apparent in congested situations.

Proposition 2 For a < s, the MPW discipline achieves a lower SLP than the FCFS discipline. The

difference between the two disciplines increases with the traffic intensity.

Staffing decisions. We consider now the impact of the MPW order on staffing decisions for the problem

of minimizing the number of servers under the constraint P (W > AWT) ≤ p, for a given p ∈ [0, 1]. In Figure

3, we compute the optimal staffing as a function of the arrival rate under the FCFS and the MPW discipline.

Under a MPW discipline, we observe that as λ increases the difference in staffing between the two disciplines
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Figure 3: Optimal staffing (µ = 1, p = 20%, AWT = 0.5)

increases. Moreover, above a threshold on the arrival rate the optimal value for s is simply s = ⌊a⌋ + 1,

where ⌊a⌋ is the integer part of a. This can be explained by the asymptotic behavior of P (W > AWT) as

the ratio a/s tends to 1. We have

P (W > AWT) ∼
a/s→1

1

1 + sµ ·AWT
,

where f(x) ∼
x→x0

g(x) means lim
x → x0

f(x)
g(x) = 1 for x0 ∈ R. Moreover, since P (W > AWT) is increasing in

a, P (W > AWT) ≤ 1
1+sµ·AWT . Thus, with s ≥ 1−p

µp·AWT the constraint on P (W > AWT) is met. On the

10



graph this threshold on the number of servers is equal to 8. Yet, the threshold 1−p
µp·AWT does not necessarily

ensures the stability of the system. Including the stability condition leads to a necessary condition of

s > max( 1−p
µp·AWT , a). Consequently, if λ ≥ 1−p

p·AWT , then s = ⌊a⌋ + 1 is the optimal staffing. This threshold

on the arrival rate is also equal to 8 on the graph. Simple staffing solutions can then be derived from this

study.

• If λ ≤ 1−p
p·AWT , then s = ⌊ 1−p

µp·AWT⌋+ 1 achieves the service level constraint and ensures the stability of the

system.

• If λ ≥ 1−p
p·AWT , then s = ⌊a⌋+ 1 is the optimal solution (i.e., no safety staffing).

From this analysis, we deduce that the staffing level under the MPW discipline can be significantly

reduced. Above a threshold on the arrival rate, no safety staffing is even required. This gives another

incentive for the manager to use the MPW order instead of the classical FCFS discipline.

Average excess wait. Although the MPW discipline allows the manager to reach more easily the service

level defined by SLP, it has an unwanted effect on the waiting time of non-prioritized customers. The

average excess (AE) measures this unintended consequence; AE = E((W − AWT)+). Under the FCFS

discipline, the waiting time W is defined by P (W = 0) = 1−C(s, a) and by its probability density function;

fW (t) = sµ(1− a)C(s, a)e−sµ(1−a)t, for t > 0. Therefore, we get

AE = E((W −AWT)+) =

∫ ∞

t=0

sµ(1− a)C(s, a)e−sµ(1−a)t(t−AWT)+ dt,

= sµ(1− a)C(s, a)

∫ ∞

t=AWT

e−sµ(1−a)t(t−AWT)dt.

By changing the variable t into u = t−AWT, we obtain

AE = = sµ(1− a)C(s, a)e−sµ(1−a)AWT

∫ ∞

u=0

u · e−sµ(1−a)u du = e−sµ(1−a)AWT · C(s, a)

sµ(1− a/s)
.

In the last expression, we identify the expected waiting time in an M/M/s queue under the FCFS discipline;

C(s,a)
sµ(1−a/s) . Under the MPW discipline, the results of Theorem 2 allow us to obtain the AE:

AE = E((W −AWT)+) = P (W > AWT) · (E(W |W > AWT)−AWT)

= (1 + λ ·AWT) ·
(
1− a

s

)
e−sµ(1−a/s)·AWT

1− a
s e

−sµ(1−a/s)·AWT
· C(s, a)

sµ(1− a/s)

In Proposition 3, we prove that the AE is higher under the MPW discipline than under the FCFS discipline.

Proposition 3 For a < s, the MPW discipline achieves a higher AE than the FCFS discipline.

In Figure 4, we compute the absolute difference between the AE under the MPW order and the FCFS

discipline. We observe that:

1. The difference is positive. As expected, the service level for non-prioritized customers is worse under

11
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Figure 4: Absolute difference in AE (s = 1, µ = 1)

MPW (Proposition 3).

2. The difference increases with the arrival rate. In congested situations, the negative outcome of MPW

is important.

3. The influence of AWT depends on the workload. In low workload situations the difference is higher for

low AWT. The opposite holds under high workload situations. Two phenomena are in competition.

For low AWT, a high proportion of customers becomes non-prioritized. These customers deteriorate

the AE. For high AWT, this proportion is lower but the proportion of prioritized customers is higher

which in turn induces extreme wait for non-prioritized customers.

Acknowledgments. The author thanks the anonymous referee for very helpful comments and advises.

Remark. Note that short versions of the proofs are provided in the article. The proofs with complete

details can be found in the online supplement.
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